NODAL LINE FINITE DIFFERENCE METHOD FOR THE ANALYSIS OF PLATES WITH VARIABLE FLEXURAL RIGIDITY

BY

DR. ENG. YOUSSEF AGAG *

INTRODUCTION

The application of semi-analytical methods for the analysis of two and three dimensional structural problems has been the subject of considerable research interest in recent years. These methods are especially advantageous for the structures having regular geometric planes and simple boundary conditions. The finite strip method as a semi-analytical procedure has been recently developed by CHEUNG [1,2]. This method can be considered as a special form of the finite element procedure using the displacement approach. Unlike the finite element method, which uses polynomial displacement functions in all directions, the finite strip method calls for use of simple polynomials across the width of the strip and harmonic series in the longitudenal direction. These series should satisfy a priori the boundary conditions at the ends of the strip. The most common series used are the basic functions, which are derived from the solution of beam vibration differential equation. These basic functions have been worked out explicitly by VLAZOV [3] for the various end conditions. This method has proved to be an economical and accurate means of treating a class of structural problems.

Mors recently a new semi-analytical procedure named " The nodal line finite difference method " (N.L.F.D) has been developed by the auther [4] for the analysis of elastic plates with two opposite simply supported ends. In this analysis, a trigono-metric series is used to express the displacement variation along the nodal lines. Basic function other than trigonometric series, is used by the auther 151 to analyze elastic plates with two opposite clamped ends. In this analysis, an iteration procedure has been used to overcome the coupling property of the sta-tic equilibrium equations. The nodal line finite difference method permits the direct formulation of the plate bending problems by reducing the partial differential equation to an ordinary differential equation. This method is similar to that the finite strip method since each uses harmonic series to express the displacement variation along the nodal lines. The nodal line finite difference method has an advantage over the finite strip method, since the number of the unknown parameters along a nodal line in this method is squal to the number of terms used in the basic function. This is greatly less than that of the finite strip method.

* Lecturer, Struct. Eng. Dept. Mansoura University, Egypt

C. 14 YOUSSEF AGAG

The object of the present work is to demonstrate the versatility of the nodal line finite difference method in the analysis of plates with variable flexural rigidity. In general, variable flexural rigidity creates numerous mathematical difficulties. The complexity of the "exact " solution depends considerably on the expressions representing the flexural rigidity and that of the epplied loading. The problems related to plates with variable flexural rigidity can seldom be solved by the analytical methods. Consequently the solutions are usually obtained via approximate and numerical techniques.

The proposed technique is used to analyze rectangular plates with variable flexural rigidity under distributed and triangular types of loading. In this analysis, a trigonometric series has been used to express the displacement variation along the nodal lines. In order to simplify the analysis, the variation of plate thickness is considered as a single variable function of the direction perpendicular to the nodal lines. In addition, it is assumed that no abrupt change of the plate thickness occurs in that direction. Although the present formulation is restricted to the trigonometric series fitted the simply supported end conditions, basic functions corresponding to a variaty of other boundary conditions could be adopted.

METHOD OF ANALYSIS

a - Nodal line finite difference equation

In deriving the differential equation of equilibrium of rectangular plates with variable thickness, it is assumed that there is no abrupt variation in thickness of the plate. The flexural rigidity B in this case is no longer a constant but a function of the coordinate x and y of the plate surface. The differential equation which represents the equilibrium condition of an element of the plate with variable thickness takes the following form:

$$B'(w'''+2'w'''+w''') + 2B'(w''+w''') + 2B'(w''+w''') + 2B'(w''+w''') + (B''+B'')(w''+w'') - (1-\nu)(B''w''-2B''w''+B''w'') = q (1)$$

As a particular application, let us consider the case of elastic isotropic plates in which the flexural rigidity B is a function of x coordinate only and constant in y direction. For this case, equation (1) can be written as follows:

$$B_{1}(w'''+2w'''+w''') + 2B'(w'''+w''') + B''(w''+yw'') = q \qquad (2)$$

where $(j = \frac{\partial}{\partial x}$, $(j = \frac{\partial}{\partial y}$ and

$$B = \frac{E t(x)}{12(1-y^2)}$$
 is the flexural rigidity of the plate
with variable thickness in x direction.

Mansoura Bulletin Vol. 10, No. 1, June Jons

Fig. 1 shows some selected different cross-sections for plates having variable thickness in x direction.

In applying the nodal line finite difference method to calculate the deflection and the internal forces in a given rectangular plate with variable thickness, let us begin by dividing the plate into a mesh of fectitious nodal lines as shown in Fig. 1. According to the prescribed boundary conditions of the two opposite ends perpendicular to the nodal lines, a basic function has to be chosen to express the displacement variation along the nodal lines. The displacement function at each nodal line is expressed as a summation of the chosen basic function terms multiplied by a single variable functions as a nodal line parameters. The displacement function at any nodal line labelled k shown in Fig. 1 can be written in the following form

$$w_{k} = \sum_{m=1}^{r} f_{m,k}(x) \cdot Y_{m}(y)$$
 (3)

Let us restrict our attention here to plates with two opposite simply supported ends perpendicular to the nodal lines. The chosen basic function fitting the boundary conditions at the two ends of the nodal lines is a trigonometric series in the form

$$Y_{m}(y) = \sin \frac{m \pi}{n} y = \sin k_{m} y \qquad (4)$$

Resolving the load into series similar to that of the chosen basic function and substituting equations (3) and (4) into equation (2) we get C. 16 YOUSSEF AGAG

$$\sum_{m=4}^{r} IB_{k}(f_{m,k}^{m}-2k_{m}^{2}f_{m,k}^{m}+k_{m}^{4}f_{m,k})+2B_{k}(f_{m,k}^{m}-k_{m}^{2}f_{m,k}^{m}) +B_{k}(f_{m,k}^{m}-k_{m}^{2}f_{m,k}^{m}) \sin k_{m}y = \sum_{m=4}^{r} q_{m,k}\sin k_{m}y \quad (`)$$

For each term of the basic function equation (5) takes the forma

$$B_{k}(f_{m,k}^{***}-2k_{m}^{2}f_{m,k}^{**}+k_{m}^{4}f_{m,k})+2B_{k}^{*}(f_{m,k}^{**}-k_{m}^{2}f_{m,k}^{*}) + B_{k}^{**}(f_{m,k}^{**}-k_{m}^{2}f_{m,k}) = q_{m,k}$$
 (b)

By applying the central finite difference technique in the x direction, equation (6) can be written as

$$\frac{1}{\Delta \mathbf{x}^4} \, {}^{1} \mathbf{C}_m^{1} \mathbf{f}_{m,k-2}^{+} \mathbf{C}_m^{2} \mathbf{f}_{m,k-1}^{+} \mathbf{C}_m^{3} \mathbf{f}_{m,k}^{+} \mathbf{C}_m^{4} \mathbf{f}_{m,k+1}^{+} \mathbf{C}_m^{5} \mathbf{f}_{m,k+2}^{1} = \mathbf{q}_{m,k} \quad (7)$$

where

$$C_{m}^{1} = \frac{1}{2} \left[\alpha_{k-1}^{2} + 2\alpha_{k}^{2} + \alpha_{k+1}^{2} \right] ,$$

$$C_{m}^{2} = \frac{1}{2} \left[-\psi_{m}^{2} \alpha_{k-1}^{2} - (12 + 4\psi_{m}^{2}) \alpha_{k}^{2} + (4 + \psi_{m}^{2}) \alpha_{k+1}^{2} \right] ,$$

$$C_{m}^{3} = \left[-(2 + \gamma \psi_{m}^{2}) \alpha_{k-1}^{2} + (10 + 4\psi_{m}^{2} + 2\gamma \psi_{m}^{2} + \psi_{m}^{4}) \alpha_{k}^{2} - (2 + \gamma \psi_{m}^{2}) \alpha_{k+1}^{2} \right] ,$$

$$C_{m}^{4} = \frac{1}{2} \left[(4 + \psi_{m}^{2}) \alpha_{k-1}^{2} - (12 + 4\psi_{m}^{2}) \alpha_{k}^{2} - \psi_{m}^{2} \alpha_{k+1}^{2} \right] ,$$

$$C_{m}^{5} = \frac{1}{2} \left[-\alpha_{k-1}^{2} + 2\alpha_{k}^{2} + \alpha_{k+1}^{2} \right] ,$$

$$\psi_{m} = \frac{f_{k}}{\lambda} , \quad \lambda = \frac{a}{\Delta x} , \quad \alpha_{k}^{2} = \frac{B_{k}}{B_{0}} \quad \text{and}$$

$$\Delta x = \frac{a}{\lambda} \quad \text{is the constant interval between}$$

Equation (7) can be written in the following form:

$$[c_{m}^{1} c_{m}^{2} c_{m}^{3} c_{m}^{4} c_{m}^{5}] if_{m,k-2} f_{m,k-1} f_{m,k} f_{m,k+1} f_{m,k+2}$$

$$= \frac{a^{4}}{B_{o}\lambda^{4}} q_{m,k}$$
(8)

Equation (8) represents the central nodal line finite difference equation for the plates of variable flexural rigidity in one direction only (x direction)

Application of equation (8) at each nodal line of the plate gives a system of simultaneous algebric equations, which can be written in the matrix form as follows:

$$[S1_m {f}_m = {IP}_m$$
⁽⁹⁾

Mansoura Bulletin Vol. 10, No. 1, June 1985 C. 17

where

(S] is a square band matrix,

(f), is the vector of the unknown nodal line parameters

and (P) is the load vector.

The square band matrix $[Sl_m whose band width equal 5 can be stored in a rectangular matrix having the dimensions of Mx5. Where M is the number of the nodal lines of the plate.$

b - Internal forces

For the elastic isotropic plates having variable thickness in one direction (x direction), the internal forces per unit length at any point are given by

 $M_{x} = -B(x)(w'' + \forall w'')$ $M_{y} = -B(x)(w'' + \forall w'')$ $M_{xy} = -M_{yx} = B(x)(1 - \forall) w'$ $Q_{x} = -B(x)(w'' + w'')$ $Q_{y} = -B(x)(w'' + w'')$ (10)

By applying the central nodal line finite difference technique, the internal forces at any nodal line labelled k can be written in the following form:

$$M_{x,k} = -B_{k} \frac{\lambda^{2}}{a^{2}} \sum_{m=1}^{r} [f_{m,k-1} - (2+\gamma\psi_{m}^{2})f_{m,k} + f_{m,k+1}] \sin k_{m}y$$

$$M_{x,k} = -B_{k} \frac{\lambda^{2}}{a^{2}} \sum_{m=1}^{r} [\gamma f_{m,k-1} - (2\gamma+\psi_{m}^{2})f_{m,k} + \gamma f_{m,k+1}] \sin k_{m}y$$

$$M_{xy,k} = B_{k} \frac{\lambda^{2}}{2a^{2}} (1-\gamma) \sum_{m=1}^{r} \psi_{m} [1-f_{m,k-1} + f_{m,k+1}] \cos k_{m}y$$

$$Q_{x,k} = -B_{k} \frac{\lambda^{3}}{2a^{3}} \sum_{m=1}^{r} (-f_{m,k-2} + (2+\psi_{m}^{2})f_{m,k-1} - (2+\psi_{m}^{2})f_{m,k+1} + f_{m,k+2}] \sin k_{m}y$$

$$Q_{y,k} = -B_{k} \frac{\lambda^{3}}{a^{3}} \sum_{m=1}^{r} \psi_{m} [f_{m,k-1} - (2+\psi_{m}^{2})f_{m,k} + f_{m,k+1}] \cos k_{m}y$$

$$(11)$$

C. 18 YOUSCEN AGAG

c - Boundary conditions

The boundary conditions are the conditions at the edges which must be prescribed in advance in order to obtain the solution of a specific plate bending problem. The application of the nodal line finite difference method in the analysis of rectangular plates in bending requires the division of the plate into a mesh of parallel nodal lines. The two opposite ends perpendicular to the nodal lines control the choise of the basic function discribed the displacement variation along the nodal lines. The other two opposite ends can take any combination of boundary conditions.

The analysis of plate bending problems via the proposed technique requires the application of the central nodal line finite difference equation at each nodal line withen the plate including the edge nodal lines. If the pivotal nodal line k is at the left or the right edge(fig.2), two fictitious nodal lines outside the plate must be introduced. According to the prescribed boundary conditions at the edge nodal lines, the parameters of the exterior nodal lines have to be expressed in terms of the edge and the two adjacent interior nodal lines. Thus the parameters of the exterior nodal lines can be written in the following form:

1 - Simply supported edge [
$$w_k = 0$$
 , ($w'' + \forall w''$) = 0]

$$f_{m,k} = 0$$

$$f_{m,k-1} = -f_{m,k+1}$$

$$f_{m,k-2} = -f_{m,k+2}$$

$$(12)$$

C. 20 YOUSSEF AGAG NUMERICAL EXAMPLES

The proposed technique has been used to analyze thin elastic isotropic rectangular plates having variable flexural rigidit in one direction. Two opposite sides of each plate are consider-ed as simply supported, while the other two sides can take any combination of boundary conditions. Four examples have been selected to demonstrate the efficiency of the proposed technique. Only the odd terms of the basic function are used because of symmetry in direction of the nodal lines. Informations regarding boundary conditions, type of loading and variation of thickness of the plate are illustrated in Figs. 3 and 4.

₿ℓ_

в

Bet

Fig. 4,

Mansoura Bulletin Vol. 10, No..1, June 1994 11, 31

1 - Analysis of square plate simply supported on four sides subjected to trapizoidal distributed load. Fig. 3. (NO. of terms = 1 - 3 - 5 - 7, $\Delta x = \ell/24$, $\ell/a = 1$, $\gamma = 0.15$

Square plate with linear variable flexural rigidity has been analyzed. The plate is divided into a mesh of twenty five nodal lines i.e $\Delta x = \ell/24$. The analysis is carried out for selected number of terms of the basic function. The results obtained are summarized in Table I. Comparison is done with those of the finite strip, the finite element and the exact solution results presented in Table 5 (REFFERENCE [2]). The results demonstrate a close agreement with these known solutions.

		Source	: Propo	eed Tech	nique	Source ; '	fable 5 Referen	ce (2)
Poiston'a ratio		Rodal L Ox - C	ine fin1 /24 , 2 25 Eque	te Diffe 5 Nodai tions	rence Linee	Finite Strip m = 1 26 Squationa	Pluits Element 72 Blements 273 Equations	Eraci
y + 0.16	Point		NC. of	Terms				
		1	3	5	7			
3	1	0.1994	0.1968	0.1967	0.1967	0.1991	0.1964	0.1996
Deflection #	.2	0.3080	0. 3045	0.3045	0.3045	0.3079	0.3043	0.3106
-))	0.3271	0, 3235	0.3235	0.3235	0.3272	0.3234	0.3264
₩.11 ² 8₀/40₀a ⁴	4	0.2710	0.2678	0.2677	0.2677	0.2712	0.2676	0.2724
	5	0.1549	0,152?	0.1526	0.1526	0.1550	0.1525	0.1653
	1	0.8)6	0.815	0.814	0.814	0.836	0.759	0.837
Nomant M _y	5	1.265	1,242	1.241	1.241	1.259	1.233	1.265
	3	1.478	1.452	1.451	1.450	1.470	1.442	1.483
	4	1.507	1,469	1.468	1.468	1,502	1.455	1.500
<u> </u>	5	1.180	1.129	1,126	1,126	1.189	1.10)	1.139
	1	0.559	0.515	0.513	0.512	0.497	0.502	0.56)
Noment M _a	2	1,209	1,121	1.116	1.115	1.114	1.099	1.212
	3	1.677	1.555	1.548	1.547	1.577	1.526	1.673
H. π ³ /49,8 ²	4	1.744	1.604	1.596	1.594	1.660	1.573	1.478
	5	1,226	1,112	1,103	1,101	1.178	1.083	1.291

Table I. Square plate with linear variable flexural rigidity simply supported on four sides under trapszoidal distributed losd (Fig. 3)

2 - Analysis of rectangular plates simply supported on four sides subjected to uniform load of intensity q. Fig. 4-a (NO. of terms = 7, $\Delta x = \ell/40$, $\beta \ell = t_m/t_0$, $\hbar = \ell/a$, $\gamma = 0.3$)

Rectangular plates with different ratios of rectangularity λ and thickness ratios \mathcal{H} have been analyzed. The analysis deals with the effect of thickness ratios \mathcal{H} on the deflection and the internal forces of the plate. Due to symmetry, only half of the plate (divided into twenty one nodal lines i.e $\Delta x = \mathcal{L}/40$) is considered in the analysis. Regarding the central point of the plate, results are presented in a form of numerical factors in Tables 1, 2 and 3 (APFINDIX I). These numerical factors are plotted in curves shown in Figs. 5-a, 5-b and 5-c. C. 22 YOUSSEP AGAG

The curves show decrease of the central deflection and increase of the central moment My with the increase of the thickness ratio \mathcal{H} (for different ratios of rectangularity \mathcal{A}) as expected. It should be mentioned that, while the central moment M_{λ} increases with the increase of the thickness ratio \mathcal{H} for the ratios of rectangularity $\mathcal{A} \leq 1$, it decreases for the ratios of rectangularity $\mathcal{A} > 1$.

3 - Analysis of square plates clamped on sides AC and BD, simply supported on the other two sides subjected to uniform load of intensity q. Fig. 4-b. (NO. of terms = 7, $\Delta x = \ell/100$, $\partial \ell = t_e/t_o$, $\gamma = 0.3$

Square plates having haunches with increased thickness toward the clamped edges have been analyzed. The analysis aims at the study of the effect of thickness ratio \mathcal{H} and length ratio \mathcal{B} of haunches on the deflection and the internal forces of the plate. The analysis was performed for half of the plate (divided into a fine mesh of fifty one nodal lines i.e $\Delta x = \mathcal{H}/100$) because of symmetry. The results was obtained in a form of numerical factors especially for the central point of the plate and the middle point of the clamped edges. These factors are given in Tables 4, 5, 6 and 7 (APPENDIX I). Moreover these numerical factors are plotted against the thickness ratio \mathcal{H} for different length ratios \mathcal{B} in a form of curves shown in Figs. 6-a, 6-b. 6-c and 6-d.

An inspection of Fig. 6-a leads to the conclusion that, the increase of either the thickness ratio \mathcal{A} or the length ratio \mathcal{A} of the haunch decreases the deflection at the central point of the plate. It can also be concluded that, the central moment M_X and M_Y decrease against increasing the thickness ratio \mathcal{A} . On the other hand, increasing the length ratio \mathcal{A} may decrease or increase the central moment M_X and M_Y . This is clearly illustrated in the disarrangement of the length ratio curves ($0 \leq \beta \leq 0.5$) given in Figs. 6-b and 6-c.

C. 24 YOUSSEF AGAG

Mansoura Bulletin Vol. 10, No. 1, June 1985 👘 🔅 🤭

The increase of the thickness ratio \mathcal{H} of the haunch increases the fixation moment M_X at the clamped edges. Fig. 6-d shows that, for each length ratio \mathcal{H} there is an optimal thickness ratio \mathcal{H} at which the maximum value of the moment M_X at the middle point of the clamped edges is occured. Any value for the thickness ratio \mathcal{H} beyond the optimal one will decrease the resultant moment M_X . This is due to the rapid decrease of the deflection of the plate at the neighbourhed of the clamped edges.

4 - Analysis of square plates clamped on side AC, simply supported on the other three sides subjected to triangular distributed load. Fig. 4-c

(NO. of terms = 7,
$$\Delta \mathbf{x} = \ell/50$$
, $\lambda \epsilon = t_p/t_0$, $\nu = 0.3$)

Square plates with one haunch at the clamped edge under triangular distributed load have been analyzed. The analysis is performed to study the effect of the haunch on the deflection and the internal forces of the plate. In this analysis, the plate is divided into a mesh of fifty one nodal lines ($\Delta x = \ell/50$). The results obtained are presented in a form of numerical factors for central point of the plate and middle point of the clamped edge. These results are summarized in the Tables 8,9,10 and 11 (APPENDIX I). In addition, plotting of these numerical factors against the thickness ratio \mathcal{H} of the haunch are illustrated in Figs. 7-a, 7-b, 7-c and 7-d.

A close study of Figs. 7-a, 7-b, 7-c and 7-d reveal that the haunch effect considered in the present example is similar to the one in the third example. Therefore, similar conclusions can be drawn.

CONCLUSION

The importance of the nodal line finite difference method presented herein, lies in the ease with which it can be applied to bending problems of rectangular plates with variable flexural rigidity. Using this method, it enables one to overcome the mathmatical complexities of the solution of these types of problems. Four examples have been selected to demonstrate the efficiency of the proposed technique. A problem for which known solutions are available, is presented in the first example. This problem was selected so that a comparison between these known solutions and the proposed one can be done. The results obtained demonstrate a close agreement with the available solutions. The other three examples aim at the study of the effect of the plate thickness variation on the structural behaviour of the plate. The results indicate the considerable effect of plate thickness variation on the deflection and the internal forces. Mensoura Bulletin Vol. 10, No. 1, Suna (199) APPENDIX I

Tables of numerical factors for deflection and bending moments

1 - Rectangular plate simply supported on all sides Fig. 4-a

×	0.50	0.75	>.00	1.25	5.50	1.75	2.98	
0 0120456785012245	6.33 5.2035 4.4705 3.3360 2.5729 2.2736 2.5729 2.2736 1.5621 1.3732 1.5621 1.3732 1.2547 1.3732 1.2547 1.3732 1.2547 1.0562	20.9769 17.6821 13.0970 13.07802 13.07802 13.07802 13.07802 13.07802 13.07802 13.07802 13.07802 13.07802 13.0781 13.0781 13.049 3.5052	40.60 40.6223 34.2914 29.2001 5.2448 21.9489 19.7240 15.9474 15.9278 1.3959 1.3959 1.3959 5.7467 8.6175 8.0165 8.0165 5.7136	60.2607 50.4787 43.0362 56.9990 37.0285 27.9319 24.5187 21.6499 19.2183 17.1650 15.3531 13.8232 13.4650 11.3162 9.3865	77.20 77.2202 64.5570 54.5972 46.6121 40.1156 34.4405 30.4435 26.7654 21.0278 31.6634 21.0278 31.7529 15.1529 15.1529 12.4152 31.2905	90.8075 15.4211 63.3960 53.8402 46.1399 34.6410 34.6410 34.6410 34.6410 34.6931 21.0866 18.8513 16.9234 15.2514 17.7940	101.)0 101. 2466 83. 5653 59. 8447 59. 3423 43. 3092 37. 5405 32. 7683 28. 7683 22. 5481 20. 1079 18. 0099 16. 1955 14. 6191 1. 3. 2418	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 1. Humarical factor & for central deflection a

Table 2. Removided factor for control moment $W_{\rm g}$

<u>*\{</u>	9.50	0.75	1,00	1.25	1.50	1.75	2.00	
	2 . 34 2 . 54 24 2 . 54 24 2 . 50 24 2 . 7 39 25 2 . 9 5 26 3 . 0 5 4 1 . 1 2 5 27 3 . 2 5 7 3 . 2 5 7 5 . 2 5 7	4.0215 4.1497 4.2696 4.3816 4.4650 4.5807 4.6674 4.7434 4.0205 4.9481 5.0035 5.0544 5.0035 5.0544 5.1477 5.1296	4.79 4.7875 5.0496 5.0496 5.2511 5.3271 5.3271 5.3271 5.3271 5.3271 5.3271 5.3271 5.32649 5.5336 5.5498 5.5498 5.5498 5.5498 5.56887	5.0250 5.1275 5.2035 5.2744 5.3574 5.3574 5.3950 5.3950 5.3950 5.3950 5.3790 5.3950 5.3950 5.3790 5.3790 5.3950 5.3140 5.2140 5.2140 5.2140 5.2140 5.2140 5.2140 5.2140	4.98 4.903; 5.0590 5.069; 5.069; 5.069; 5.069; 5.0433 5.0212 4.98243 4.98243 4.9842 4.7842 4.7842 4.7243 4.5529 4.5979 4.5325	4. 8245 4. 9197 4. 7968 4. 7588 4. 7588 4. 7087 4. 5488 4. 5014 4. 5014 4. 5426 4. 3476 4. 34764 4. 3476 4. 34766 4. 34766 4. 347666666666666666666666666666666666666	4.64 4.5148 4.5229 4.3229 4.3252 4.3252 4.3252 4.3252 4.3252 4.3254 3.5705 3.5505 3.4461 3.5505 3.4461 3.52406	й жи 2 t (6) H . L . F . C H . L . F . C . C H . L . F . C . C H . L . F . C . C . C . C . C . C . C . C . C

Table). Numerical factor y_2 for control moment M_y

24	0.50	0.75	1.00	1.25	1.50	1.75	2.00	
1.0	1.16	2,8316	4.79 4 1861	6 6100	8.12 8.12	. 184 8	10,17	Stacl (6)
1.2	1.2220).0764	5.2591	7.2556	5.8942 4.6407	10,1299	11.0348	₩161€,ÿ 4
1.1	1.3480	3.5365 3.7915	6.1674 5.6042	R.3167 9.1073	10.3546	11.6927	12.5251	- -
1.5	1,4749	4.0223	7.0283 7.43%	9.6757 10.2214	11.5854	13.0999 13.7422	14.0366 14.6817	
1.5	1,6001	4.4598	7.8379	10.7452	12.8936	14.3544	15.8648	- -
2.0	1.782)	1.1040	8.9274	12.1922	14.5007	15.00T4	15,9210	· ·
2.2	1,8992	5.5020	9,6440	13.0622	15.4525	16.9760	17.0707	
2.4	2.0123	5.0633	10.5924	13,8647	15.)214	17.8540	18.9264 19.1795	45 17

¥, * 10"7. Ft 4 *

C. 23 YOUSSEF AGAG

2 - Square plate clamped on two opposite sides, simply supported on the other two opposite sides Fig. 4-b

2	Q.)	0.7	0.)	Ð,4	0.5	
1.0	19.20	19.20	19.20	19,20	19,70	Sect (6)
	19,1843 18,1131 18,1938 16,3982 19,7045 19,0956 14,5853	19.1843 17.6126 16.2459 15.0532 14.0045 13.0785 17.2574	T9.184) 17.2998 15.6757 14.26357 13.0340 13.9515 10.9515 10.9576	19.1843 16.9934 15.1503 13.340 12.2412 11.0810 10.0715	19.1843 14.5923 14.6931 12.7399 13.2002 19.0661 9.0204	K.L.F.D 0 4 4 8
1.9 2.0 2.1 2.2 2.2 2.2	1).6597 1].2010 12.9414 12.6359 12.3504 12.1111	10.872) 10.2857 9.7575 9.2806 8.8485 6.4551	9. 1910 8. 19147 8. 1074 7. 3604 7. 3661 5. 6181		11751 6.71331 6.4331 6.4586 4.7984	45 24 12 14 14 14 14 14
2,4 7.5	\$1.8852 F1.6800	8.0987 7.7725	6.2110 \$.8401	5.2372	4.4307	

Table 4. Bundrical Causer & for contral defiretion a

٠	10**.	\$	ŧ	**/\$ _a
---	-------	----	---	--------------------

æ

Table 5. Numerical factor χ_{1} for central moment H_{χ}

×	C, I	0,2	0.)	0.4	Q.5	*****
1.0	3.32	2+38	3.32	3,32).j¥	Stoct (6)
1.0)-)254 1. 2188	3. 325x). 3254	3. 1254	3-32%	X.L.P.D
1.2	3.1633	3.0527	2,9903	2.9516	2.9965	
22 I	3.0972	2.9364	2.8290	2.7657	2.8461	N
1.5	2.9871	2.8)13	2.6902	2.6325	2.7158	N
1,6	2.9410	2.6507	2.4462	2.1600	2.5971 2.4002	*
1.1	2.6997	2.3726	2.3388	2.2398	2,3909	2
1.9	2.8291	7,5013	2,2399	2.1266	2.3012	4
2.6	2.7989	2.3766	2.0647	1.4257	2.2193	
2.1	2.7714	2. 1222	1.9869	1.0357	2.0757	-
2.3	2.7936	2.2719	1.9149	1-7212	2.3128	
2.4	2.7028	2.1824	1,8481	1.0738	1.955	•
2.5	2,6830	2.1434	1.728)	1.5026	1.8536	×

_	_		***	~~~~~	~~~~~	******	
ж,	-	10"	÷.,	¥4	9	*2	

Table ő. Bumerloni factor fa for centrel moment My

20	0.1	C.2	0.3	0.4	0.5	
1,0	2.44	2.44	2,44	2,44	2.44	RANGE 167
1.0	2.4422	2.4422	2.4422	2.4422	2.4422	8.1. 9.0
1,1	2,3223	2,2621	2.2263	2.2002	2,1787	
1.2	2,2193	2.1047	2.0379	1.9979	1 9609	
1.7	2,1001	1.9664	1.8725	1.8136	1,7787	
1.4	2.0522	3,8444	1.7266	1,6079	1.6247	
1.5	1.9839	1.1363	1.5912	1.5204	1.4934	
1,6	1.9237	1.6402	1.4820	1,3995	1.1805	24
1.7	1.8702	1.5543	1.1790	1.2924	1.2627	
1.8	1.8227	1.4774	1.2868	1 1968	1.1676	
1,9	1.7802	1.4083	1.2008	1.1111	1.1228	
7.0	1,7421	1.1454	1.1289	1.0145	1.0569	
2.1	1.7078	1.2896	1.0611	0.4655	0.9987	1
2.2	1.6770	1.2385	0.9997	0.4023	0.9469	
2.3	1.6490	1.1921	0.9418	0.8441	n 9002	
2.4	1.6217	1.1499	0.8929	0 7919	0.4541	
2.5	KOOB	1 1111	0.9252	0 7466	0 8223	

	¥ _y * 10 ⁻² , ξ _t ų * ²										
	Table	7. Numerical	factor by fo	or moment X _s a	i mfddla vs	40 and 60					
X	¢.1	c.?	0.3	0.4	0.5						
1.0	- 6.97	- 6.97	- 6.97	- 6.97	- 6.97	£x671 161					
1.0	- 6.9832	- 6.90)2	- 6.9832	- 6.98)2	- \$.98)2	N.L.P.O					
	- 1,2797	1 - 7.4013	~ 7.4104	- 7, 1706	3.3100	· ·					
	- 7.4917	A 7.7602	# 7.7997 	- F. (C) /	~ 7.8044						
	7.7108	- R. 3594	- 4.4721	- 6.1524	. 8. 1 196						
1.4	- 7.7134	6.5695	- 8,7616	- 8.5295	- 8.3781						
1.6	. 7.6324	. 8, 1795	- 9.0220	- 8.855*	- 8,6017	f -					
5.7	- 7.5719	- 8.9320	- 4,256)	- 9.1220	- 0.0126	÷					
1.0	- 7.3565	- 9,0494	- 9.4659	- 9.3410	- 9.0125						
1.9	* 7.1305	- 9.1339	~ 9.6527	- 9.3440	- 9.2029	<u> </u>					
2.0	- 6,858)	- 9,1616	- 9,8181	- 3-732)	- 9.3850	1 *					
2.1	- 5.5442	- 9,2126	9.9536	- 9,9066	- 9.5600	1 1					
5.5	- 6.1924	- 9.2107	*10,0905	-10.0685	- 3.7287	•					
5.3	~ 5.8069	- 9.1835	-10.2002	-10.2107	* 9.8922	1 1					
Z.4	- 3.3918	- 9,1327	+10.2316	-10.1981	1 +107,12011 NA AA(A)	1					
3.1	- 4,9509	* 7,0799	~10×3148	-10.4614	j + (¶2+ X UEZ						

*. - 10^{~2}. \$2 4 *²

3 - Square plate clamped on one side, simply supported on the other three sides Fig. 4-c

	······································
2 0.2 0.4 0.6 0.0	120
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.00 Exact (6) 44 12.8644 F.L.P.0 45 10.9212 55 3.1025 57 7.0568 42 6.3907 56 4.6459 41 4.2205 56 4.6459 10 3.4808 10 3.4808 10 3.4808 21 2.5485 21 2.5485 22 2.5485 23 2.1622

-

Table 9. Rumerical factor T_4 for central moment Ξ_{π}

23	0.Z	0.4	0.6	¢.B	1.0	
1.0	1,90	1,90	1.90	1,90	1.90	Exact (5
1-0	1.8850	1.8890	1.8850	1.8850	1 8850	
3.9	1.8287	1.60â6	1.8185	1.7405	1 8526	P. 12. T. 7. 54
1.2	1.776)	1.7338	1.7485	1.7921	1 6161	
1.3	1.7275	1.6608	1.6765	1.7410	1.3826	*
1.4 j	1.6819	1.5899	1.6011	1.6491	1 7466	· ·
1.5	5.6393	1,5211	1.3945	1.6346	1 2100	
1.6	1.5994	1.4546	1.4852	i kana	4 191	N 1
1.7	1.3614	1.1901	1 1011	1 2010	1.9133	•
1.8	1.5269	1.1282	1 100	1.764/	3,0404	
1.9	1.4940	1 2663	1, 1100	1.4(23	1.906	*
2.0	1.4631	1 3102	1.1.2.2.2.4	1,199	1,5730	
	1 2 3 2 1		1.1590	17 1995	1.5405	*
5 ÷	1 2020	11248	1.0998	1-3138	1,5090	
	1,4403	1.1015	1.0)19	1.2670	1.4784	
£13	1. 1814	1.0495	0.365)	1.2109	1,4487	1
<u>.</u>	1.1574	0.9997	0.9001	1,1605	1.4199	1
2.5	1.3349	0.9517	0.8363	1.1109	1 T919	*

* 10"2. \$1 9,62

Table 10. Numerical factor for nonent My

H P	0.2	0,4	0.6	D,\$	1,0	
1.0	1.60	1.60	1.60	1.60	\$.60	Ernet (6)
	1,5062	1,480)	1.5799	1.5799	1,5799	#.6.8.0
].)	1.3783	1.369g 1.3072	1.4347	1.5024	1.5265	W
5	1.2710	1.2313	1,2568	1.4360 1.4062	1.4836	
1.7	1.1800	1.0959	1.2052	1,378) 1,3520	1.4433	
1.8	1,1021	0.9785 0.9254	1,1107	1,3272	5.4100	
7.0 2.1	1.0574	0.8756 0.8287	1.0257	1.2817	. 3809	71
2.2	1.005) 0.9775	0,7846 0,7429	0.9484	1.2405	.355	7: XF
2.4	0,3517 0,9277	0.7036 0.6664	0.6773	.30)1	1,))20	

	1	** °0"								
Table 11.	Numerical	Iscio?	82	for	Roment	¥1	住宅	midd)•	¢£	×C

<u> </u>	0.2	0.4	C,Č	0.8	1.0	
1.0	- 4,80		- 4,80	- 4.80	~ \$.80	-
1.0	- 4.8242	- 4.8242	· 4.8212	~ 4.8242	- 4.8247	N.L.P.D
		~ 243942	~ 5.1407	- 3.0856	- 5.0375	. 10
	* 3:21+D	- 3, 3392	* 5.4422	- 2 3295	- 5.2322	"
111	* 7.0017	- 2.0314	- 5.7304	- 5.5580	- 5.4109	
	~ \$,9310	- 9.2160	- 5.0066	< 5.77)	- 5.5751	
1.3	* 0.2007		- 6,2717	- 5,9761	- 5,728)	**
1.6	- 5,4260	~ 6.827]	- 6.5267	- 6,16 9 ≰	\$.8700	*
1.7	~ 6.5492	- 7,1097	× 6,772€	- 6.3512	- ₹10055	*
3-40	- 6.6306	* 7.3771	- 7.0092	- 6.5252	· 6.1258	
1.9	- 6.6711	÷ 7.5294	- 1.2370	- 6,6917	- 4.2(17	•
2.0	- 6.6718	* 7.8665	- 7, <u>458</u> 6	- 5,9510	• €.)507	· ·
2,1	- 6,6)4)	- 8.0884	- 1.6720	- 7.00)0	- 6.4535	н н
2.2	- 5.5504	- 6.2952	- 7.8782	- 1.1307	- 6.5505	1 .
2.3	- 6.4522	- 8.4867	- 8.0775	~ 1.2922	- 6.6423	-
2.4	- 6, 1i in	- 6:6632	- 8.270Z	- T.4286	- 6.7294	
2.5	· 6.1416	- 8.8246	» 8.4565	~ 2.5505	- 6,8121	1

K_x × 10⁻², ¥y q₂=²

C. 30 YOUSSEF AGAG NOTATION

¥	=	transverse deflection.					
a	Ħ	length of the nodal lines.					
l	Ħ	length or width of the plate.					
ΔX	*	distance between the nodal lines.					
Е	=	modulus of elasticity.					
t(x)	驒	variable thickness of the plate.					
¥	*	poisson's ratio.					
B(x)		variable flexural rigidity of the plate.					
B _k		flexural rigidity at any nodal line labelled k.					
B		flexural rigidity at a reference nodal/line.					
h	Ħ	ratio of rectangularity of the plate.					
36	#	thickness ratio.					
ø _k	****	flexural rigidity ratio at any nodal line labelled k.					
f _{m.k}	*	nodal line parameters.					
Ύπ	***	chosen basic function.					
q	#	load intensity.					
[S] _m		square band matrix.					
ff) m		nodal line parameters vector.					
{PJ _m	m	load vector.					

REFERENCES

1.	CHEUNG,Y.K.:	The Finite Strip Method in the Analysis of Elas- tic Plates with Two Opposite Simply Supported Ends. Proc.Inst.Civ.Eng., 40. 1968, p. 1-7
2,	CHEUNG,Y.K.:	Finite Strip Method Analysis of Elastic Slabs. Proc.ASCE, 94, EM6, 1968, p. 1365-1378
3.	VLAZOV,V. :	General Theory of Shells and its Application in Engineering, NASA TT F-69, April 1964
4.	AGAG,Y. :	Nodal Line Finite Difference Method for the Ana- iysis of Elastic Plates with Two Opposite Simply Supported Ends. The Bulletin of the Faculty of Engineering, EL-Mansoura University, Vol.9, No.1. June 1984, p. C.136-C.147
5.	AGAG,Y. ;	The Nodal Line Finite Difference Method with Iteration Procedure in the Analysis of Elastic Plates in Bending. The Bulletin of the Faculty of Engineering, EL-Mansoura University, Vol. 9, No.2, December 1984, p. C.8-C.22
6.	TIMOSHENKO,S	.P. and WOJNOWSKY-KRIEGER,S.: Theory of Plates and Shells, 2nd. Ed., McGraw Hill, New York, 1959